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4. Rationale:  

Leukemia is the most frequent malignancy of childhood, accounting for one out of 

three cases of childhood cancer. In the United States, approximately 4,900 children 

develop leukemia per year [1]. Acute lymphoblastic leukemia (ALL) is the most common 

subtype of childhood leukemia, which accounts for 80% of all cases of leukemia [2]. 

Although ten-year survival is greater than 80%, there is concern over the long-term 

morbidities related to treatment. In fact, ALL survivors are at a greater risk of developing 

cardiovascular disease compared to their unaffected contemporaries [3,4]. Additionally, 

other treatment-related effects include obesity [5,6], metabolic syndrome [7], and 

diabetes [4,7]. Therefore, identifying risk factors for the development of ALL is 

important for understanding the biology of disease risk and therapy-related complications 

in this population (e.g., cardiovascular disease). 

 

Until recently, contribution of inherited genetic variation to ALL susceptibility was 

poorly defined. Taking a genome-wide approach, Dr. Yang’s group and others 

independently reported that genetic polymorphisms in IKZF1, ARID5B, CEBPE, 

CDKN2A, PIP4K2A, and GATA3 are associated with risk of developing ALL in children 

[8-12]. However, almost all ALL susceptibility variants identified so far are located in 

non-coding regions of the genome and their functions are not clearly understood.  

 

Variants located in coding regions have been linked to pathogenesis of a variety of 

diseases. For example, the majority of Mendelian diseases are driven by rare 

missense/nonsense variants. Common germline coding variants impacting protein 

function have been reported to underlie genome-wide association (GWA) association 

signals [13]. With the availability of commercial single nucleotide polymorphism (SNP) 

chips specifically designed for coding regions of the genome, exome-based GWAS has 

recently been applied to a number of diseases/traits with exciting novel discoveries [14].  

 

We propose to utilize existing exome chip variation from ALL cases from St. Jude 

Children’s Research Hospital and controls from the ARIC study to conduct a 

comprehensive GWAS to identify germline coding genetic variants associated with 

susceptibility to ALL in children. 

 

5. Main Hypothesis/Study Questions: 

The analytical plan outlined here encompasses exome chip variants genotyped for 

ARIC Whites and Blacks through the CHARGE consortium [15] and genotyped for ALL 

cases at St. Jude Children’s Research Hospital. Analysis of exome chip will allow for: (1) 

identification of novel genes with common/rare variants that contribute to ALL 

susceptibility, and (2) identification of rare variation in known candidate genes (e.g., 

those identified by GWAS) influencing ALL susceptibility. 

 

6. Design and analysis (study design, inclusion/exclusion, outcome and other 

variables of interest with specific reference to the time of their collection, summary 

of data analysis, and any anticipated methodologic limitations or challenges if 

present). 

 



Exome chip genotypes 

Exome chip genotyping for the ARIC cohort has been described previously [7]. Exome 

chip genotyping for the ALL cases were performed at St. Jude using the exact same 

Illumina HumanExome array. 

  

Analysis of ALL susceptibility will follow two main approaches: 

1) Single variant association analyses 

Single marker analyses will focus on variants that are relatively common (i.e., >1% minor 

allele frequency). We will apply principal component analysis to the combined set of 

ALL cases and ARIC subjects, to examine population structures and/or potential 

genotyping batch effects (or other technical factors). Genetic ancestry will be quantified 

by using STRUCTURE (European, African, East Asian, and Native American), as we 

described previously [4].  We will perform four GWAS: 1) for all subjects regardless of 

ancestry, 2) those of European descent (>90% European genetic ancestry), 3) those of 

African descent (>70% African genetic ancestry), 4) those of Hispanic ethnicity (>10% 

Native American genetic ancestry). The association of SNP genotype with ALL status 

will be evaluated by comparing genotype frequency between ALL cases and ARIC (as 

controls) in regression models, after adjusting for population structure. PLINK or R will 

be used to run the GWAS analyses.  

 

2) Gene-based analyses 

For variants of low frequency (i.e., <1% minor allele frequency), we will evaluate the 

rare variants in aggregate within a gene using the SKAT test. Rare variants may be 

further subset to only include those of possible functional consequence (e.g., 

nonsynonymous, splicing, stopgain, or stoploss). The SKAT test is implemented in R 

(package SKAT 2.13.0). We will specifically restrict this analysis to subjects of European 

descent (>90% European genetic ancestry) or those of African descent (>70% African 

genetic ancestry), due to population stratification.   

 

Meta-analysis 

Meta-analysis will be conducted across ethnicities for single variant tests and also for 

gene-based tests, using the weighted Z-score based METAL test.  

 

Phenotypes:  

ALL 

ALL cases are from St. Jude Children’s Research Hospital and the Children’s Oncology 

Group. Approximately 5,000 subjects were included based on sample availability and 

genotyping quality. There is no notable sampling bias [3 and 4]. 

 

Non-ALL controls 

Because the prevalence of adult survivors of childhood ALL (as well as the overall 

incidence of childhood ALL) is excessively low in the general population (1 in 10,000 in 

the US [1]), the ARIC cohort can serve as a comparison population in our study. This 

approach (e.g., using genetic data from an adult cohort) has been used successfully in 

other childhood cancer genome-wide association studies. For example, the Multi-Ethnic 



Study of Atherosclerosis (MESA) and Genetic Association Information Network (GAIN) 

cohorts have successfully used non-ALL controls in other genome-wide studies [1, 3, 4].  

 

Covariates: genetic ancestry and/or any observed genotyping batch effects 
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